DEPARTMENT OF MATHEMATICS AND STATISTICS

JAI NARAIN VYAS UNIVERSITY: JODHPUR

B.Sc./B.A. Mathematics Three Years Program: Semester wise Course Type, Course Code, Workload, Credits and Maximum Marks

Level	Sem.	Course	Course	Course Title	L	Р	H/W	Total	Credit	Total	Sessiona	EoSE	M.M.
		Туре	Code					Hours	S	Credit	lMarks	Marks	l
										S			
			MAT5001T	Calculus	6	-	-	90	6	6	30	70	100
5	Ι	DCC		Other Department -1						6			l
				Other Department-2						6			
		AEC		Either Hindi or English	2		2	30		2	30	70	100
				Total credits						20			
			MAT5002T	Algebra	6	-	-	90	6	6	30	70	100
	II	DCC		Other Department -1						6			
				Other Department-2						6			
		AEC		Environmental Science	2		2	30		2	30	70	100
				Total credits						20			
		Exit With E	B.Sc./B.A. Cert	ificate and Entry with B.Sc. C	ertif	icate	for B.S	Sc. Diplo	ma				
	III		MAT6001T	Differential Equation	6	-	-	90	6	6	30	70	100
6		DCC		Other Department -1						6	30	70	100
				Other Department-2						6	30	70	100
		SEC		Choose any one SEC from						2	30	70	100
				the list									l
				provided for Semester III									
				Total credits						20			
	IV	DCC	MAT6002T	Analysis	6	-	-	90	6	6	30	70	100
				Other Department -1						6	30	70	100
				Other Department-2						6	30	70	100

FOR THE ACADEMIC SESSIONS: 2023-24, 2024-25 & 2025-26

	SEC		Choose any one SEC from the list provided for Semester IV				2	30	70	100
			Total credits				20			
Exit with B.Sc./B.A. Diploma and Entry with B.Sc. Diploma for B.Sc. Degree										

		Discipline	Specific Electi	ive (DSE) – Choose any number	of th	e f	ollowir	ng from	Mathema	atics Disc	ipline		
			MAT7101T	Geometry	6	-	-	90	6	6	30	70	100
	V	DSE	MAT7102T	Numerical Methods and L.P.P.	6	-	-	90	6	6	30	70	100
				Other Department -1						6			
7				May be from another						6			
				Departments-2									
		SEC		Choose any one SEC from the						2	30	70	100
				list									
				provided for Semester V									
Total cred				Total credits						20			
	Discipline Specific Elective (DSE) – Choose any number of the following from Mathematics Discipline					ipline							
			MAT7103T	Transform Analysis	6	-	-	90	6	6	30	70	100
	VI	DSE	MAT7104T	Mechanics	6	1	-	90	6		30	70	100
				Other Department -1						6			
				May be from another						6			
				Departments-2									
		SEC		Choose any one SEC from the						2	30	70	100
				list									
				provided for Semester VI									
				Total credits						20			
		Exit with B.Sc. Degree											

Note: One AEC with Semester I and II each. One SEC with Semester III, IV, V and VI each.

Credits to be Earned in B.Sc. Three Years Program

Course	Total Credits in	Semester I	Semester II	Semester III	Semester IV	Semester V	Semester VI
type	individual						
	Discipline, AEC & SEC						
	DCC - 72 (24+24+24)	DCC - 18	DCC - 18	DCC - 18	DCC – 18	DSE – 18 credits	DSE – 18 credits
	DSE - 36 (18+18)	credits	credits	credits	credits		
	AEC – 04 (2+2)	AEC -2 credits	AEC -2 credits	SEC -2 credits	SEC -2 credits	SEC -2 credits	SEC -2 credits
	SEC – 08 (4+4)						
	Total 120 Credits	20	20	20	20	20	20

Note: One AEC with Semester I and II each. One SEC with Semester III, IV, V and VI each.

Note. Those courses in which no practical classes assigned than Total Lectures per week will be six andcredits also 06 for UG Programs.

The examination of all AEC can't be conducted by one paper therefore faculty wise code is suggested for AEC Courses in Arts, Commerce and Science Faculty as given below.

Faculty of Arts (1)	Faculty of Commerce (2)	Faculty of Science (3)
General Hindi - AEN5111T	General Hindi - AEN5211T	General Hindi - AEN5311T
General English – AEN5112T	General English – AEN5212 T	General English – AEN5312 T
Environmental Science - AEN5113T	Environmental Science - AEN5213T	Environmental Science - AEN5313T

Note : Code for SES already allotted with slots and procedure

Page **4** of **13**

DEPARTMENT OF MATHEMATICS AND STATISTICS JAI NARAIN VYAS UNIVERSITY:JODHPUR

B.Sc. / B.A. Mathematics

Examinations 2024, 2025 & 2026

Sr.	Level	vel Seme- Course Type of Title		Total	Teaching Total Hours Per		Credits			
No.		ster	Code	Course		Marks		Wee		
							L	Т	Р	
1	5	I	MAT5001T	DCC	Calculus	100	6	-	-	6
2	5	II	MAT5002T	DCC	Algebra	100	6	-	-	6
	Exit	t with B.S	Sc. Certificate a	nd Entry v	vith B.Sc. Certific	cate for B	B.Sc.	Diplo	oma	
		III	MAT6001T		Differential					
3	6			DCC	Equation	100	6	-	-	6
4	6	IV	MAT6002T	DCC	Analysis	100	6	-	-	6
	Exit with B.Sc. Diploma and Entry with B.Sc. Diploma for B.Sc. Degree									
	7	V	MAT7101T	DSE	Geometry	100	6	-	-	6
5	7	V	MAT7102T	DSE	Numerical Methods and L.P.P.	100	6		-	6
		VI	MAT7103T		Transform					
6	7			DSE	Analysis	100	6	-	-	6
6	-	VI	MAT7104T		Mechanics					
	7			DSE		100	6		-	6
			E	Exit with B	.Sc. Degree			•	•	1

Annexure – I

B.Sc. / B.A. Mathematics Semester: I, 2023-24

Discipline Centric Core Course (DCC)

MAT5001T: CALCULUS

(**30** CA + **70** End Sem. = Max. Marks: **100**)

Course Credits	No. of Hours Per Week	Total No. of Teaching Hours				
6 Credits	6 Hours	90 Hours				
Course Outcome: On successful completion of the course, the students will be able to:						
 Apply the concept and principles of differential calculus to find the curvature, concavity and points of inflection, envelopes, rectilinear asymptotes (Cartesian & parametric form only) of different curves. Trace standard curves in Cartesian and polar form. 						
The student has knowle integrals; line and surf Green and Stokes and G	dge of central concepts dire face integrals; vector fields auss theorem.	ectional derivative; gradient; multiple s; divergence, curl; the theorems of				
	SYLLABUS					
Unit-I: Polar Co-ordinates, equation of a curve, Derivati curvature.	Angle between radius ves of an arc, curvature,	vector and the tangent, Pedal Centre of curvature and chord of				
Unit-II: Partial differentiatio partial differentiation, Maxir and of three variables conn multipliers.	Unit-II: Partial differentiation, Euler's theorem on homogeneous functions, chain rule of partial differentiation, Maxima and Minima of functions of two independent variables and of three variables connected by a relation, Lagrange's Method of undetermined multipliers.					
Unit-III: Asymptotes, Singu Envelopes and evolutes, Theo	ilar points, curve traci ory of Beta and Gamma fu	ng (Cartesian and polar form), nctions, Rectification.				
Unit -IV: Volumes and Surfa under the sign of integration surface area, Dirichlet's integ integral into polar co-ordinat	ices of solids of revolutio , Double and triple integr ral, Change of order of int ces.	n, Differentiation and integration rals with applications volume and tegration and changing the double				
Unit -V: Vector Calculus: operators. Stoke, Green and only).	Curl, Gradient, Divergend Gauss Theorems (Stater	ce and Identities involving these nent, application and verification				
	SUGGESTED BOOK	S				
• Gorakh Prasad: A Text Book	of Differential Calculus; Pothi	shala PvtLtd.Allahabad.				
• J.L. Bansal, S.L.Bhargava an	d S.M. Agarwal : A Text Bo	ok of Differential Calculus II (Hindi				
Ed.) and Integral Calculus, Vol	. II (Hindi Ed.); Jaipur Publish	ing House, Jaipur.				
• D.C. Gokharoo & S.R. Saini: D)ifferential Calculus (Hindi Ed	.); Navkar Prakashan, Ajmer.				
• O.P.Tandon, and Sharma, K.C.: Integral Calculus; Jaipur Publishing House, Jaipur.						
Gupta, Juneja and Tandon: Differential Calculus (English Ed.);Ramesh Book Depot, Jaipur.						
Gorakh Prasad: Integral Calculus; Pothishala Pvt. Ltd. Allahabad.						
D.C. Gokhroo, S.R. Saini, S.S.Bhati : Vector Calculus (Hindi Ed.); Navkar Prakashan, Ajmer.						

- S.L.Bhargava, Banwari Lal: Vector Calculus (Hindi Ed.); Jaipur Publishing House, Jaipur.
- Goswami, M.P. & others : Differential Calculus; Neelkanth publisher, Jaipur.

• Goswami, M.P. & others : Integral Calculus; Neelkanth publisher, Jaipur. Note: Latest edition of textbooks and reference books may be used.

B.Sc. / B.A. Mathematics Semester : II, 2023-24

Discipline Centric Core Course (DCC)

MAT5002T: ALGEBRA

(**30** CA + **70** End Sem. = Max. Marks: **100**)

Course Credits	No. of Hours Per Week	Total No. of Teaching Hours						
6 Credits	6 Hours	90 Hours						
Course Outcome: On successful completion of the course, the students will be able to:								

• This course aims to provide a first approach to the subject of algebra, which is one of the basic pillars of modern mathematics.

• The course will help prepare you for further study in abstract algebra as well as familiarize you with tools essential in many other areas of mathematics. The other aim of this module is to provide the learner with the skills, knowledge and competencies to carry out their duties and responsibilities in a pure Mathematics environment.

SYLLABUS

Unit-I: Rank of Matrix, The characteristic equation of a matrix, Eigen values and Eigen vectors, Cayley-Hamilton theorem and its use in finding the inverse of a matrix, Reduce the matrix into normal form.

Unit II: Relations between the roots and coefficients of general polynomial equations in one variable.Symmetric function of roots, Transformation of equations, Descarte's rule of signs, Solution of cubic equations (Cardon's method), Biquadratic equations (Ferrari's Method).

Unit-III: Definition and general properties of groups, Order of an element of a group, Cyclic group, Permutation group, Subgroups, Index of a subgroup, Theorems on Subgroups of a cyclic group.

Unit-IV: Cosets, Lagrange's theorem, Group homomorphism, Cayley theorem, Normal subgroups, quotient Groups, Fundamental theorem of homomorphism, Basic concepts of Ring, Field and Integral domain.

Unit-V: Vector Space: Definition and examples of a vector space, subspace, Linear combination and linear span, Linear dependence and independence of vectors.

SUGGESTED BOOKS

- M. Ray: A Text Book of Higher Algebra, S.Chand & Co., New Delhi.
- J.L. Bansal, S.L. Bhargva, & S.M. Agarwal: Algebra (Hindi Ed.), Jaipur Publishing House, Jaipur.
- A.R. Vasishta and A.K. Vasistha: Matrices, Krishna Prakashan Ltd. Meerut.
- G.C. Sharma: Modern Algebra; Ram Prasad & Sons, Agra.
- J.L. Bansal & S.L. Bhargava : Abstract Algebra (Hindi Ed.); Jaipur Publishing House, Jaipur.
- R.S. Agarwal.: Text Book on Modern Algebra; S. Chand & Co., New Delhi.
- D.C. Gokhroo & S.R.Saini: Abstract Algebra (Hindi Ed.); Jaipur Publishing House, Jaipur.

Annexure - II

B.Sc. / B.A. Mathematics Semester : III, 2024-25

Discipline Centric Core Course (DCC)

MAT6001T: DIFFERENTIAL EQUATIONS

(30 CA + 70 End Sem. = Max. Marks: 100)

Course Credits	No. of Hours Per Week	Total No. of Teaching Hours				
6 Credits	6 Hours	90 Hours				
Course Outcome: On success	ful completion of the course, the	e students will be able to:				
• Will be able to explain t	• Will be able to explain the concept of differential equation.					
Classifies the differentia	 Classifies the differential equations with respect to their order and linearity. 					
• Explains the meaning o	t solution of a differential equation	n.				
Will be able to find solu		nual equations.				
	STLLABUS					
Unit-I: Exact and reducible t	o exact differential equations of	of first order and first degree.				
singular solutions	inerential equations solvable i	for x,y,p. Clairaut's form and				
Unit-II: Linear differential	aguations with constant cooff	icionte Homogonoous linoar				
differential equations with	variable coefficients Simultar	neous differential equations				
Total differential equations	of the form $Pdx + Odv + Rdz$	= 0, by method of inspection				
and method for homogeneou	is equations.					
Unit-III : Linear differential	equations of second order of t	he form $\frac{d^2y}{dt^2} + P \frac{dy}{dt^2} + Qy = R$				
One-in. Enter unterential equations of second order of the form $\frac{dx^2}{dx^2} + P \frac{dx}{dx} + Qy = R$.						
Exact Linear differential equations of n ^m order. Differential equations of the various $d^2 y$						
forms e.g., (i) $\frac{dx^2}{dx^2} = f(y)$ (ii)	i) Equations not containing y	directly (iii) Equations not				
containing x directly. Metho	d of variation of parameters to	the solution of second order				
linear differential equations.		-				
Unit-IV: Series solutions of	Second Order Linear differen	tial equations, Power series				
method, Series solution of B	essel and Legendre equations.	Partial differential equations				
of the first order. Lagrange's	form. Some special types of e	quations which can be solved				
Unit V: Dartial differential	i the general method. Charpit (general) method of solution.				
non-homogeneous equation	s with constant coefficients.	Partial differential equations				
reducible to equations with	constant coefficients Monge's	method of for the solution of				
equation of type $Rr + Ss + Ti$	$= V_{.}$	include of for the solution of				
	SUGGESTED BOOKS					
• Sharma, Gupta : Differentia	l Equations: Krishna Prakashan. M	leerut.				
• Ray, Chaturvedi : Different	ial equations; Kedar Nath, Ram Na	ath & co., Agra.				
• J.L.Bansal, H. S. Dhami : Dif	ferential equations (Vol. II); Jaipu	r Publishing House, Jaipur.				
• D.C.Gokhroo, S.R. Saini a	and R.K. Kumbhat: Differential	equations (Hindi Ed.);Navkar				
Prakashan, Ajmer.						
• Gokhroo, Saini and Oza : P	Gokhroo, Saini and Oza : Partial differential equations: Jaipur Publishing House, Jaipur					
Note: Latest edition of textbooks and reference books may be used.						

B.Sc. / B.A. Mathematics Semester : IV, 2024-25

Discipline Centric Core Course (DCC)

MAT6002T: ANALYSIS

(30 CA + 70 End Sem. = Max. Marks: 100)

Course Credits	No. of Hours Per Week	Total No. of Teaching Hours				
6 Credits	6 Hours	90 Hours				
Course Outcome: On successf	ul completion of the course, the	e students will be able to:				
• think about the basic proof tech	iniques and fundamental definitions	related to the real number system.				
They can demonstrate some of the fundamental theorems of analysis.						
 Identify curves and regions in t 	Identify curves and regions in the complex plane defined by simple expressions.					
Describe basic properties of con	mplex integration and having the abil	ity to compute such integrals.				
 Decide when and where a giver 	i function is analytic and be able to fin	nd it series developement.				
	SYLLABUS					
Unit-I: Real Number System:	Dedekind's theory of Real numl	pers, upper and lower bounds,				
limiting points, Bolzano-Weiers	stress theorem, derived sets, denu	imerable sets, enumerable sets,				
open and closed sets.	D					
Riemann Integral: Theory of	Riemann integration, necessary a	and sufficient conditions for R-				
Integrability, Darboux theorem	,	toot I constitution Datio Toot				
Decha's test De Morgen en	Unit-II: Test of convergence of infinite series: Cauchy's root test, Logarithmic Ratio Test,					
Alternating series Leibnitz to	a Bertrand's test, Cauchy's col	required) Convergent series				
tests for convergence of a series	s: comparison test D'Alembert's E	l'atio test				
Unit-III: Complex Analysis: F	unctions Limits and continuity	Differentiability Concept of an				
analytic function. Cartesian and	d Polar form of Cauchy-Riemann	equations. Harmonic function.				
Conjugate function. Construction	on of analytic functions. Power S	eries: Absolute convergence of				
power series, circle and radius	of convergence of power series, su	im function of a power series.				
Unit-IV: Complex integration:	Complex integration as the sum	of two line integrals, Cauchy				
integral theorem, Cauchy's int	egral formula, Cauchy's integral f	ormula for the derivative of an				
analytic function, Application o	f Cauchy's integral formula.					
Unit-V: Morera's Theorem. L	iouville's Theorem, Poisson's ir	ntegral formula. Expansion of				
analytic function by Taylor's an	d Laurent's theorems. Singularitie	es of an analytic function, types				
of singularities.						
	SUGGESTED BOOKS					
• Shanti Narayan: Real Analys	is; S.Chand & Co., New Delhi.					
• G.N.Purohit: Real Analysis; Jaipur Publishing House, Jaipur.						
• S.L. Bhargava, S.P. Goyal: Real Analysis (Hindi Ed.); Jaipur Publishing House, Jaipur.						
• Shanti Narayan: Theory of Functions of a Complex Variable; S.Chand & Co., New Delhi.						
K.P.Gupta: Complex Analysis; Pragati Prakashan, Meerut						

- D.C. Gokhroo, S.R. Saini & G.R. Yadav: Complex Analysis (Hindi Ed.); Navkar Publication, Ajmer.
- **G.N. Purohit:** Complex Analysis; Jaipur Publishing House, Jaipur.
- **S. Ponnusamy:** Foundations of Complex Analysis, Narosa Publishing House, Bombay, New Delhi.
- V. Karunakaran: Complex Analysis, Narosa Publishing House. Bombay, New Delhi (2002).

B.Sc. / B.A. Mathematics Semester : V, 2025-26 Discipline Specific Elective (DSE)

MAT7101T: GEOMETRY

(**30** CA + **70** End Sem. = Max. Marks: **100**)

Course Credits	No. of Hours Per Week	Total No. of Teaching Hours				
6 Credits	6 Hours	90 Hours				
Course Outcome: On successf	ul completion of the course, the	e students will be able to:				
 Identify and describe 2I 	• Identify and describe 2D and 3D shapes. Analyze, compare, create, and compose shapes.					
 Identify shapes as two-dimensional or three-dimensional. 						
understand geometrical	l terminology for angles, triangles	, quadrilaterals and circles.				
	SYLLABUS					
Unit-I: Polar equation of a co	onic, polar equations of tangen	t, normal, asymptotes, chord				
of contact, auxiliary circle,	director circle of a conic and	d related problems. General				
equation of second degree. N	ature of conic, Tracing of conic	es (Cartesian coordinates).				
Unit-II: Sphere: Definition,	Plane section of a sphere, s	phere through the circle of				
intersection of two spheres	, power of a point, tangent p	lane, polar plane, polar line,				
angle of intersection of two s	pheres, length of tangent, radi	cal plane, radical axis, coaxial				
system of spheres and limiting	ng points.					
Cone : Definition, enveloping	; cone, intersection of a line ar	nd a cone, tangent plane of a				
cone, condition of tangency,	cone, condition of tangency, reciprocal cone, angle between the lines in which a plane					
cuts the cone, three mutually	perpendicular generators and	right circular cone.				
Cylinder : Definition, envelop	oing cylinder, equation of enve	loping cylinder, right circular				
cylinder.						
Unit-III: The Central Conic	oids (referred to principal a	xes). Tangents and tangent				
planes, Polar planes and pol	ar lines, Section with a given	centre, Enveloping cone and				
Enveloping cylinder of conice	oids.					
Unit -IV: Equations of the no	ormal to an ellipsoid, number o	of normals from a given point				
to an ellipsoid, Cone through	six normals, Conjugate diame	ter and diametral planes and				
their properties. Cone as a Ce	entral surface. Paraboloids.					
Unit -V: Plane Sections of C	onicoids: Nature of the plane	section of a central conicoid,				
circular sections of the conic	old and central conicold, ellips	old, hyperboloid, paraboloid,				
Umbilics, Generating lines of	hyperboloid of one sheet and i	ts properties.				
	SUGGESTED BOOKS					
R.J.T. Bell: Coordinate Geome	etry of Three dimensions; Macmill	an India Ltd., New Delhi.				
• Vasistha, Agarwal : Analytica	l Solid Geometry; Pragati Prakash	in, Meerut.				
• Gokhroo, Saini & Rathi: Analy	vtical 3-D Geometry (Hindi Ed);Ja	ipur Pub. House, Jaipur.				
• J.L. Bansal, S.L. Bhargva & S	S.M. Agarwal : 3-D Coordinate G	eometry II; Jaipur Pub. House,				
Jaipur.	D Coordinate Coordinates (Uised)	Ed) Joinun Dubliching Users				
J.L.Dansai & S.L.Dhargava: 2	J.L.Bansai & S.L.Bhargava: 2-D Coordinate Geometry (Hindi Ed) Jaipur Publishing House,					
Jaipui. Sharma CI. Varshnev: Coordinate Geometry, Pragati Prakashan, Meerut						
DC Columna, S. C. Saini & IDN Oiba · 2-D Geometry (Hindi Ed.) Navkar Publication Aimer						

• D.C. Gokhroo, S.R. Saini & J.P.N. Ojha : 2-D Geometry (Hindi Ed.), Navkar Publication, Ajmer.

B.Sc. / B.A. Mathematics Semester : V, 2025-26 Discipline Specific Elective (DSE)

MAT7102T: NUMERICAL METHODS AND L.P.P. (30 CA + 70 End Sem. = Max. Marks: 100)

Course Credits	No. of Hours Per Week	Total No. of Teaching Hours				
6 Credits	6 Hours	90 Hours				
Course Outcome: On successf	ul completion of the course, the	e students will be able to:				
• Demonstrate understanding of common numerical methods and how they are used to						
obtain approximate solu	itions to otherwise intractable ma	athematical problems.				
Apply numerical method	ds to obtain approximate solution	is to mathematical problems.				
Ine main objective of value. It consists of line:	inear programming is to maxim	ize or minimize the numerical				
linear equations or in th	e form of inequalities.	to the constraints in the form of				
	SYLLABUS					
Unit-I: Difference operators	and factorial notation, Differen	nces of polynomial, Newton's				
formulae for forward and	backward interpolations. D	ivided differences, relation				
between divided difference	s and Simple difference. Nev	vton's general interpolation				
formulae, Lagrange interpolation formula.						
Unit-II: Central difference	Unit-II: Central differences, Gauss, Stirling and Bessel interpolation formulae.					
Numerical Differentiation. N	Numerical Differentiation. Numerical integration, Trapezoidal, Simpson's and Weddle's					
rules.						
Unit-III: Solution of linear di	Unit-III: Solution of linear difference equations with constant and variable coefficients.					
A Real root of Algebraic and	de	ng by bisection, Regula Faisi				
Unit-IV: Convex sets and	their properties Introducti	on to linear programming				
problems. The simplex techn	ique to solve L.P.P (slack, surp)	us and artificial variable).				
Unit-V: The simplex techni	que: Big M-method. Duality :	Concept of duality in linear				
programming, Framing of du	al programming, Elementary t	neorems of duality.				
	SUGGESTED BOOKS					
• D.C. Gokhroo & S.R. Saini: L	inear Programming (Hindi Ed.), 🛙	Navkar Prakashan, Ajmer.				
• Mittal, Sethi: Linear Program	mming, Pragati Prakashan, Meeru	t.				
• Goyal, Mittal: Numerical An	alysis, Prograti Prakashan, Meeru	t.				
• J.L.Bansal, S.L. Bhargava	& S.M. Agarwal: Numerica	l Analysis (Hindi Ed.),Jaipur				
Publishing House, Jaipur.	Publishing House, Jaipur.					
• H.C. Saxena : Numerical Ana	H.C. Saxena : Numerical Analysis; S.Chand & Co., New Delhi					
D.C. Gokhroo : Numerical Analysis (Hindi Ed.); Navkar Prakashan, Ajmer						
• S.L. Bhargava, K.C. Sharma & S.S. Bhati: Linear programming (Hindi Ed.), Jaipur						
Publishing House, Jaipur.						

B.Sc. / B.A. Mathematics Semester : VI, 2025-26 Discipline Specific Elective (DSE)

MAT7103T: TRANSFORM ANALYSIS (30 CA + 70 End Sem. = Max. Marks: 100)

Course Credits	No. of Hours Per Week	Total No. of Teaching Hours	
6 Credits	6 Hours	90 Hours	
Course Outcome: On successful completion of the course, the students will be able to:			
• Solve differential & integral equations with initial conditions using Laplace transform.			
Evaluate the Fourier transform of a continuous function and be familiar with its basic			
properties. The z transform is the major mathematical tool for analysis in such areas as digital			
control and digital signal processing. 3. use of the Laplace transform gives rise to the			
basic concept of the transfer function of a continuous (or analog) system.			
SYLLABUS			
Unit-I: Laplace Transforms: Definition and existence of Laplace transform, Shifting			
theorems, Laplace transforms of derivatives and integrals, Laplace transforms of			
function multiply and divide by t^n , Laplace transform of periodic function, Inverse			
Laplace Transforms and its properties, Convolution theorem.			
Unit-II: Applications of Laplace Transform to the solution of differential equations with			
constant coefficient and variable coefficient, Applications of Laplace Transform to the			
solution of difference equations and Boundary value problem.			
Unit-III: Fourier Transform: Definition and properties of Fourier transform, Inverse			
Fourier transform, relation between Fourier and Laplace transform, Modulation			
Theorem, convolution of two functions, Parseval's identity, convolution theorem,			
Fourier transform of derivative.			
Unit-IV: Applications of Fourier transform, Applications of Fourier transform to solve			
the BVP and the partial differential equation of second order.			
Unit-V: Z-transform: Definition, change of scale and shifting property of z-transform,			
inverse z-transform, Application of z-transform to solution of difference equation,			
partial sum and convolution theorem of z-transform.			
SUGGESTED BOOKS			
• Goyal, J.K. and Gupta, K.P. : Laplace and Fourier transforms, Pragati Prakashan.			
• H.K. Dass: Advanced Engineering Mathematics, S.Chand Pvt. Ltd., New Delhi.			
• Goyal, S.P. and Goyal, A.K.: Integral transform, Jaipur publishing House.			

B.Sc. / B.A. Mathematics Semester : VI, 2025-26 Discipline Specific Elective (DSE)

MAT7104T: MECHANICS (30 CA + 70 End Sem. = Max. Marks: 100)

Course Credits	No. of Hours Per Week	Total No. of Teaching Hours		
6 Credits	6 Hours	90 Hours		
Course Outcome: On successful completion of the course, the students will be able to:				
• Understand and use basic terms for the description of the motion of particles, vector functions and the fundamental laws of Newtonian mechanics. solve mechanics problems in one dimension that involve one or more of the forces of gravity, friction and air resistance				
SYLLABUS				
Unit-I: Resultant and equilibrium of coplanar forces acting on a rigid body. Friction.				
Unit -II: Stable and Unstable equilibrium. Forces in three dimensions, Poinsot's central axis, Wrenches. Virtual work and common catenary.				
Unit-III: Velocities and accelerations along radial and transverse directions and along tangential and normal directions. Simple harmonic motion and motion under inverse square law.				
Unit-IV: Definition of moment and product of inertia, moment and product of inertia of				
rectangular, square and triangular leminas, circular and elliptic plates, moment and				
product of inertia of sphere and cone.				
Unit-V: D'Alembert principle, general equation of motion of rigid body, motion of center inertia and motion relative to centre of inertia, motion about a fixed axis under finite force.				
SUGGESTED BOOKS				
 S.L. Loney: Rigid Body Dynamics P.P.Gupta: Rigid Body Dynamics J.L.Bansal: Rigid Body Dynamics R.S. Verma: A Text Book on S S.L. Loney: Dynamics of a pa M.Ray: A Text book on Dynamics D.C.Gokhroo, S.R. Saini & C 	nics; Cambridge Univ. Press. nics, Vol. I; Krishna Prakashan, M nics; Jaipur Publishing House, Jai Statics; S. Chand & Co., New Delhi rticle & Rigid bodies. mics; S. Chand & Co., New Delhi. G.R.Yadav: Higher Dynamics II	landir, Meerut. pur. (Hindi Ed.); Navkar Prakashan,		
 Ajmer. S.L. Bhargava & S.M.Agarwa S.L. Bhargava, S.M.Agarwa Jaipur. Gokhroo: Statics (Hindi Ed.) 	al: Dynamics (Hindi Ed.);Jaipur F l & V.G. Gupta: Statics (Hindi Navkar Prakashan, Ajmer.	Publishing House, Jaipur. Ed.); Jaipur Publishing House,		